11 research outputs found

    MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS

    Get PDF
    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble determined the flow pattern in the liquid. A mathematical model is presented which can adequately describe the observed phenomena.</p

    Scaling in ANOVA-simultaneous component analysis

    No full text
    In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.status: publishe

    A comparison of methods for classifying clinical samples based on proteomics data: A case study for statistical and machine learning approaches

    Get PDF
    The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems
    corecore